Finite-sample inference with monotone incomplete multivariate normal data, I

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite-sample inference with monotone incomplete multivariate normal data, I

We consider problems in finite-sample inference with two-step, monotone incomplete data drawn from Nd(μ,Σ), a multivariate normal population with mean μ and covariance matrix Σ. We derive a stochastic representation for the exact distribution of b μ, the maximum likelihood estimator of μ. We obtain ellipsoidal confidence regions for μ through T , a generalization of Hotelling’s statistic. We de...

متن کامل

Finite-sample inference with monotone incomplete multivariate normal data, II

We continue our recent work on finite-sample, i.e., non-asymptotic, inference with two-step, monotone incomplete data from Nd(μ,Σ), a multivariate normal population with mean μ and covariance matrix Σ. Under the assumption that Σ is block-diagonal when partitioned according to the two-step pattern, we derive the distributions of the diagonal blocks of b Σ and of the estimated regression matrix,...

متن کامل

Exact Inference with Monotone Incomplete Multivariate Normal Data

We consider problems in finite-sample inference with two-step, monotone incomplete data drawn from Nd(μ,Σ), a multivariate normal population with mean μ and covariance matrix Σ. We derive stochastic representations for the distributions of μ̂ and Σ̂, the maximum likelihood estimators of μ and Σ, respectively. Under the assumption that Σ is block-diagonal when partitioned according to the two-step...

متن کامل

The Stein phenomenon for monotone incomplete multivariate normal data

We establish the Stein phenomenon in the context of two-step, monotone incomplete data drawn from Np+q(μ,Σ), a (p+ q)-dimensional multivariate normal population with mean μ and covariance matrix Σ. On the basis of data consisting of n observations on all p+q characteristics and an additional N − n observations on the last q characteristics, where all observations are mutually independent, denot...

متن کامل

Likelihood Based Finite Sample Inference for Singly Imputed Synthetic Data Under the Multivariate Normal and Multiple Linear Regression Models

In this paper we develop likelihood-based finite sample inference based on singly imputed partially synthetic data, when the original data follow either a multivariate normal or a multiple linear regression model. We assume that the synthetic data are generated by using the plug-in sampling method, where unknown parameters in the data model are set equal to observed values of their point estima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2009

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2009.05.003